Deadline: 01. 11. 2019

ECE 347 – Electronics II + Lab

_ LAB 6 / Laboratory Homework 1_

Question 1)

- A) For the above circuit, Calculate DC Bias voltages and currents for each transistors.
- **B)** Construct the above circuit in PROTEUS program. Set both supplies, $V_{CC} = 10 Volt$ and $V_{EE} = -10 Volt$. Measure and write DC Bias voltages for each transistors. Using measured values, determine I_E and r_e for each transistors.
- C) Calculate the differential and common mode gain $(A_{V_d} and A_{V_c})$
- **D**) Apply input of $V_i = 20 \ mV$, f= 10 KHz to the plus (+) input and 0V to the minus (-) input in the circuit of the above figure. Measure in PROTEUS program and write the output voltages $(V_{0_1} \ and \ V_{0_2})$ and calculate an average value of V_{0_d} .

(**HINT:** The formula of $V_{O_d} = \frac{V_{O_1} + V_{O_2}}{2}$)

(**HINT:** Electronic Elements to be used in PROTEUS program = (2N3703 PNP)Bipolar Transistor), 2x (2N2369 NPN Transistors), frequency= 1 KHz, $V_{Amplitude} = 10 \text{ mV}$ **Question 2)** Identify the type of transistor amplifier this is (common-collector, common-emitter, or common-base), and identify whether it is "inverting or non-inverting."

Also, explain how to derive the voltage gain equation for this amplifier:

$$A_V = \frac{R_C}{r_e}$$

Question 3) Would you characterize this following transistor amplifier as being "inverting" or "noninverting", with the base terminal of transistor Q1 being considered the input? Explain your answer.

Question 4)

- A) For the following circuit, Calculate DC Bias voltages and currents for each transistors.
- **B)** Construct the following circuit in PROTEUS program. Set both supplies, $V_{CC}=10$ Volt and $V_{EE}=-9$ Volt. Measure and write DC Bias voltages for each transistors. Using measured values, determine I_E and r_e for each transistors.
- C) Calculate the differential and common mode gain $(A_{V_d} and A_{V_c})$

D) Apply input of $V_1 = 20 \text{ mV}$, f = 10 KHz to the plus (+) input and 0V to the minus (-) input in the circuit of the following figure. Measure in PROTEUS program and write the output voltage V_0 , V_E , and V_C for each transistors.

(**HINT:** Electronic Elements to be used in PROTEUS program = 2x (2N2369 NPN Transistors), frequency= 1 KHz, $V_{Amplitude} = 10 mV$, $R_C = 10 kiloohm$, $R_E = 5.6 kiloohm$)