

ECE 347 - Electronics II + Lab

_ LAB 6 / Laboratory Homework 1_

Question 1)

A) For the above circuit, Calculate DC Bias voltages and currents for each transistors.
B) Construct the above circuit in PROTEUS program. Set both supplies, $V_{C C}=10 \mathrm{Volt}$ and $V_{E E}=-10$ Volt. Measure and write DC Bias voltages for each transistors. Using measured values, determine I_{E} and r_{e} for each transistors.
C) Calculate the differential and common - mode gain $\left(A_{V_{d}}\right.$ and $\left.A_{V_{c}}\right)$
D) Apply input of $V_{i}=20 \mathrm{mV}, \mathrm{f}=10 \mathrm{KHz}$ to the plus (+) input and 0 V to the minus (-) input in the circuit of the above figure. Measure in PROTEUS program and write the output voltages $\left(V_{0_{1}}\right.$ and $\left.V_{O_{2}}\right)$ and calculate an average value of $V_{O_{d}}$.
(HINT: The formula of $V_{O_{d}}=\frac{V_{O_{1}}+V_{O_{2}}}{2}$)
(HINT: Electronic Elements to be used in PROTEUS program = (2N3703 PNP Bipolar Transistor), 2x (2N2369 NPN Transistors), frequency $=1 \mathrm{KHz}, V_{\text {Amplitude }}=$ 10 mV)

Question 2) Identify the type of transistor amplifier this is (common-collector, common-emitter, or common-base), and identify whether it is "inverting or non-inverting."

Also, explain how to derive the voltage gain equation for this amplifier:

$$
A_{V}=\frac{R_{C}}{r_{e}}
$$

Question 3) Would you characterize this following transistor amplifier as being "inverting" or "noninverting", with the base terminal of transistor Q1 being considered the input? Explain your answer.

Question 4)

A) For the following circuit, Calculate DC Bias voltages and currents for each transistors.
B) Construct the following circuit in PROTEUS program. Set both supplies, $V_{C C}=10$ Volt and $V_{E E}=-9$ Volt. Measure and write DC Bias voltages for each transistors. Using measured values, determine I_{E} and r_{e} for each transistors.
C) Calculate the differential and common - mode gain $\left(A_{V_{d}}\right.$ and $\left.A_{V_{c}}\right)$
D) Apply input of $V_{\mathrm{i}}=20 \mathrm{mV}, \mathrm{f}=10 \mathrm{KHz}$ to the plus (+) input and 0 V to the minus (-) input in the circuit of the following figure. Measure in PROTEUS program and write the output voltage V_{0}, V_{E}, and V_{C} for each transistors.

(HINT: Electronic Elements to be used in PROTEUS program $=2 \mathrm{x}$ (2 N 2369 NPN Transistors), frequency $=1 \mathrm{KHz}, V_{\text {Amplitude }}=10 \mathrm{mV}, R_{C}=10$ kiloohm, $R_{E}=5.6$ kiloohm)

