Operational Amplifiers

Boylestad
Chapter 10

DC-Offset Parameters

Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset:

Input offset voltage
Input offset current
Input offset voltage and input offset current
Input bias current
Since the user may connect the amplifier circuit for various gain and polarity operations, this output offset voltage is important.

Input Offset Voltage (V_{IO})

The spec. sheet of an op-amp indicates an input offset voltage (V_{10}).
To determine the effect of this input voltage on the output, consider the connection shown below

Input Offset Voltage (V_{10})

EXAMPLE 10.8 Calculate the output offset voltage of the circuit in Fig. 10.43. The op-amp spec lists $V_{\mathrm{IO}}=1.2 \mathrm{mV}$.

Input Offset Voltage (V_{10})

EXAMPLE 10.8 Calculate the output offset voltage of the circuit in Fig. 10.43. The op-amp spec lists $V_{\mathrm{IO}}=1.2 \mathrm{mV}$.

Solution:

Eq. (10.16): $\quad V_{o}($ offset $)=V_{\mathrm{IO}} \frac{R_{1}+R_{f}}{R_{1}}=(1.2 \mathrm{mV})\left(\frac{2 \mathrm{k} \Omega+150 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}\right)=\mathbf{9 1 . 2} \mathbf{~ m V}$

Input Offset Current (IIO)

If there is a difference between the dc bias currents generated by the same applied input, this also causes an output offset voltage:

The input offset current $\left(I_{0}\right)$ is specified in the specifications for an op-amp

Input Offset Current (IIO)

If there is a difference between the dc bias currents generated by the same applied input, this also causes an output offset voltage:

The input offset current $\left(I_{/}\right)$is specified in the specifications for an op-amp

Replace the bias currents through the input resistors by the voltage drop that each develops

Input Offset Current (IIO)

Use superposition

$$
\begin{gathered}
V_{o}^{+}=I_{\mathrm{IB}}^{+} R_{C}\left(1+\frac{R_{f}}{R_{1}}\right) \\
V_{o}^{-}=I_{\mathrm{IB}}^{-} R_{1}\left(-\frac{R_{f}}{R_{1}}\right)
\end{gathered}
$$

$$
V_{o}\left(\text { offset due to } I_{\mathrm{IB}}^{+} \text {and } I_{\mathrm{IB}}^{-}\right)=I_{\mathrm{IB}}^{+} R_{C}\left(1+\frac{R_{f}}{R_{1}}\right)-I_{\mathrm{IB}}^{-} R_{1} \frac{R_{f}}{R_{1}}
$$

The compensating resistance R_{C} is usually approximately equal to R_{1}

$$
\begin{aligned}
V_{o}(\text { offset }) & =I_{\mathrm{IB}}^{+}\left(R_{1}+R_{f}\right)-I_{\mathrm{IB}}^{-} R_{f} \\
& =I_{\mathrm{IB}}^{+} R_{f}-I_{\mathrm{IB}}^{-} R_{f}=R_{f}\left(I_{\mathrm{IB}}^{+}-I_{\mathrm{IB}}^{-}\right) \\
I_{\mathrm{IO}}=I_{\mathrm{IB}}^{+}-I_{\mathrm{IB}}^{-} & \rightarrow \quad V_{o}\left(\text { offset due to } I_{\mathrm{IO}}\right)=I_{\mathrm{IO}} R_{f}
\end{aligned}
$$

Input Offset Current (IIO)

Example:
Calculate the offset voltage for the circuit for op-amp specification listing $\mathrm{I}_{\mathrm{IO}}=100 \mathrm{nA}$

Input Offset Current (IIO)

Example:
Calculate the offset voltage for the circuit for op-amp specification listing $\mathrm{I}_{\mathrm{IO}}=100 \mathrm{nA}$

Solution: $V_{o}=I_{\mathrm{IO}} R_{f}=(100 \mathrm{nA})(150 \mathrm{k} \boldsymbol{\Omega})=\mathbf{1 5} \mathbf{~ m V}$

Total Offset Due to V_{IO} and I_{IO}

Op-amps may have an output offset voltage due to V_{10} and $I_{I O}$. The total output offset voltage equals the sum of the effects of both:
$V_{0}($ offset $)=V_{0}\left(\right.$ offset due to $\left.V_{10}\right)+V_{0}\left(\right.$ offset due to $\left.I_{10}\right)$

Total Offset Due to V_{IO} and I_{IO}

EXAMPLE 10.10 Calculate the total offset voltage for the circuit of Fig. 10.46 for an opamp with specified values of input offset voltage $V_{\mathrm{IO}}=4 \mathrm{mV}$ and input offset current $I_{\mathrm{IO}}=150 \mathrm{nA}$.

Total Offset Due to V_{IO} and I_{IO}

EXAMPLE 10.10 Calculate the total offset voltage for the circuit of Fig. 10.46 for an opamp with specified values of input offset voltage $V_{\mathrm{IO}}=4 \mathrm{mV}$ and input offset current $I_{\mathrm{IO}}=150 \mathrm{nA}$.

Input Bias Current (I_{IB})

A parameter that is related to input offset current $\left(I_{0}\right)$ is called input bias current $\left(I_{I B}\right)$

The input bias currents are calculated using:

$$
I_{I B}^{-}=I_{I B}-\frac{l_{10}}{2}
$$

$$
I_{I B}^{+}=I_{I B}+\frac{I_{10}}{2}
$$

The total input bias current is the average of the two:

$$
I_{I B}=\frac{I_{I B}^{-}+I_{I B}^{+}}{2}
$$

Input Bias Current (I_{IB})

EXAMPLE 10.11 Calculate the input bias currents at each input of an op-amp having specified values of $I_{\mathrm{IO}}=5 \mathrm{nA}$ and $I_{\mathrm{IB}}=30 \mathrm{nA}$.

Input Bias Current (I_{IB})

EXAMPLE 10.11 Calculate the input bias currents at each input of an op-amp having specified values of $I_{\mathrm{IO}}=5 \mathrm{nA}$ and $I_{\mathrm{IB}}=30 \mathrm{nA}$.

Solution:

$$
\begin{aligned}
& I_{\mathrm{IB}}^{+}=I_{\mathrm{IB}}+\frac{I_{\mathrm{IO}}}{2}=30 \mathrm{nA}+\frac{5 \mathrm{nA}}{2}=\mathbf{3 2 . 5} \mathbf{n A} \\
& I_{\mathrm{IB}}^{-}=I_{\mathrm{IB}}-\frac{I_{\mathrm{IO}}}{2}=30 \mathrm{nA}-\frac{5 \mathrm{nA}}{2}=\mathbf{2 7 . 5} \mathbf{n A}
\end{aligned}
$$

Frequency Parameters

An op-amp is a wide-bandwidth amplifier. The following factors affect the bandwidth of the opamp:

Gain

Slew rate

Gain and Bandwidth

The op-amp's high frequency response is limited by its internal circuitry. The plot shown is for an open loop gain ($A_{O L}$ or $A_{V D}$). This means that the op-amp is operating at the highest possible gain with no feedback resistor.

In the open loop mode, an op-amp has a narrow bandwidth. The bandwidth widens in closed-loop mode, but the gain is lower.

Gain and Bandwidth

- Low frequency open loop gain listed by the manufacturer's specification as A_{VD} (voltage differential gain)
- As the frequency increases, gain drops off until it finally reaches the value of 1 (unity).
- The frequency at this gain value is specified by the manufacturer as the unitygain bandwidth, B_{1}
- Another frequency of interest is that at which the gain drops by 3 dB (or to 0.707 the dc gain, $\mathrm{A}_{\text {VD }}$)
- This is the cutoff frequency of the op-amp, f_{C}.
- The unity-gain frequency and cutoff frequency are related by

$$
f_{1}=A_{\mathrm{VD}} f_{C} \quad \rightarrow \quad \begin{aligned}
& \text { unity-gain frequency may also be } \\
& \text { called the }
\end{aligned}
$$

Slew Rate (SR)

Slew rate (SR): The maximum rate at which an op-amp can change output without distortion.

$$
S R=\frac{\Delta V_{o}}{\Delta t} \quad(\text { in } \mathrm{V} / \mu \mathrm{s})
$$

The SR rating is listed in the specification sheets as the $\mathrm{V} / \mu \mathrm{s}$ rating.

Slew Rate (SR)

EXAMPLE 10.13 For an op-amp having a slew rate of $\mathrm{SR}=2 \mathrm{~V} / \mu \mathrm{s}$, what is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.5 V in $10 \mu \mathrm{~s}$?

Slew Rate (SR)

EXAMPLE 10.13 For an op-amp having a slew rate of $\mathrm{SR}=2 \mathrm{~V} / \mu \mathrm{s}$, what is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.5 V in $10 \mu \mathrm{~s}$?

Solution: Since $V_{o}=A_{\mathrm{CL}} V_{i}$, we can use

$$
\frac{\Delta V_{o}}{\Delta t}=A_{\mathrm{CL}} \frac{\Delta V_{i}}{\Delta t}
$$

from which we get

$$
A_{\mathrm{CL}}=\frac{\Delta V_{o} / \Delta t}{\Delta V_{i} / \Delta t}=\frac{\mathrm{SR}}{\Delta V_{i} / \Delta t}=\frac{2 \mathrm{~V} / \mu \mathrm{s}}{0.5 \mathrm{~V} / 10 \mu \mathrm{~s}}=40
$$

Any closed-loop voltage gain of magnitude greater than 40 would drive the output at a rate greater than the slew rate allows, so the maximum closed-loop gain is 40 .

Maximum Signal Frequency

Slew rate determines the highest frequency of the op-amp without distortion.
For a sinusoidal signal of general form $v_{o}=K \sin (2 \pi f t)$

$$
\text { signal maximum rate of change }=2 \pi f K \mathrm{~V} / \mathrm{s}
$$

To prevent distortion at the output, the rate of change must be less than slew rate

$$
\begin{aligned}
2 \pi f K & \leq \mathrm{SR} \\
\omega K & \leq \mathrm{SR}
\end{aligned}
$$

$$
f \leq \frac{S R}{2 \pi K}
$$

Maximum Signal Frequency

EXAMPLE 10.14 For the signal and circuit of Fig. 10.48, determine the maximum frequency that may be used. Op-amp slew rate is $\mathrm{SR}=0.5 \mathrm{~V} / \mu \mathrm{s}$.

Maximum Signal Frequency

Solution: For a gain of magnitude

$$
A_{\mathrm{CL}}=\left|\frac{R_{f}}{R_{1}}\right|=\frac{240 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=24
$$

the output voltage provides

$$
\begin{gathered}
K=A_{\mathrm{CL}} V_{i}=24(0.02 \mathrm{~V})=0.48 \mathrm{~V} \\
\omega \leq \frac{\mathrm{SR}}{K}=\frac{0.5 \mathrm{~V} / \mu \mathrm{s}}{0.48 \mathrm{~V}}=1.1 \times 10^{6} \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

Since the signal frequency $\omega=300 \times 10^{3} \mathrm{rad} / \mathrm{s}$ is less than the maximum value determined above, no output distortion will result.

General Op-Amp Specifications

Other op-amp ratings found on specification sheets are:

Absolute Ratings

Electrical Characteristics

Absolute Ratings

These are
common maximum ratings for the op-amp.

Absolute Maximum Ratings

Supply voltage	$\pm 22 \mathrm{~V}$
Internal power dissipation	500 mW
Differential input voltage	$\pm 30 \mathrm{~V}$
Input voltage	$\pm 15 \mathrm{~V}$

Electrical Characteristics

Characteristic	Minimum	Typical	Maximum	Unit
V_{IO} Input offset voltage		1	6	mV
$I_{\text {IO }}$ Input offset current		20	200	$n \mathrm{~A}$
$I_{\text {IB }}$ Input bias current		80	500	nA
$V_{\text {ICR }}$ Common-mode input voltage range	± 12	± 13		V
$V_{\text {OM }}$ Maximum peak output voltage swing	± 12	± 14		V
A_{VD} Large-signal differential voltage amplification	20	200		V / mV
r_{i} Input resistance	0.3	2		$\mathrm{M} \Omega$
r_{o} Output resistance		75		Ω
C_{i} Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
$I_{C C}$ Supply current		1.7	2.8	mA
P_{D} Total power dissipation		50	85	mW

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

Common Mode Rejection Ratio (CMMR)

One rating that is unique to op-amps is CMRR or common-mode rejection ratio.

Because the op-amp has two inputs that are opposite in phase (inverting input and the non-inverting input) any signal that is common to both inputs will be cancelled.

Op-amp CMRR is a measure of the ability to cancel out commonmode signals.

Common Mode Rejection Ratio (CMMR)

Differential Inputs

When separate inputs are applied to the op-amp, the resulting difference signal is the difference between the two inputs.

$$
V_{d}=V_{i_{1}}-V_{i_{2}}
$$

Common Inputs

When both input signals are the same, a common signal element due to the two inputs can be defined as the average of the sum of the two signals.

$$
V_{c}=\frac{1}{2}\left(V_{i_{1}}+V_{i_{2}}\right)
$$

Output Voltage

Since any signals applied to an op-amp in general have both in-phase and out-of-phase components, the resulting output can be expressed as

$$
V_{o}=A_{d} V_{d}+A_{c} V_{c}
$$

where $V_{d}=$ difference voltage
$V_{c}=$ common voltage
$A_{d}=$ differential gain of the amplifier
$A_{c}=$ common-mode gain of the amplifier

Common Mode Rejection Ratio (CMMR)

1. To measure A_{d} : Set $V_{i_{1}}=-V_{i_{2}}=V_{s}=0.5 \mathrm{~V}$, so that

$$
\begin{gathered}
V_{d}=\left(V_{i_{1}}-V_{i_{2}}\right)=(0.5 \mathrm{~V}-(-0.5 \mathrm{~V})=1 \mathrm{~V} \\
V_{c}=\frac{1}{2}\left(V_{i_{1}}+V_{i_{2}}\right)=\frac{1}{2}[0.5 \mathrm{~V}+(-0.5 \mathrm{~V})]=0 \mathrm{~V}
\end{gathered}
$$

Under these conditions the output voltage is

$$
V_{o}=A_{d} V_{d}+A_{c} V_{c}=A_{d}(1 \mathrm{~V})+A_{c}(0)=A_{d}
$$

2. To measure A_{c} : Set $V_{i_{1}}=V_{i_{2}}=V_{s}=1 \mathrm{~V}$, so that

$$
\begin{gathered}
V_{d}=\left(V_{i_{1}}-V_{i_{2}}\right)=(1 \mathrm{~V}-1 \mathrm{~V})=0 \mathrm{~V} \\
V_{c}=\frac{1}{2}\left(V_{i_{1}}+V_{i_{2}}\right)=\frac{1}{2}(1 \mathrm{~V}+1 \mathrm{~V})=1 \mathrm{~V}
\end{gathered}
$$

Under these conditions the output voltage is

$$
V_{o}=A_{d} V_{d}+A_{c} V_{c}=A_{d}(0 \mathrm{~V})+A_{c}(1 \mathrm{~V})=A_{c}
$$

Common Mode Rejection Ratio (CMMR)

$$
V_{o}=A_{d} V_{d}+A_{c} V_{c}
$$

$$
\mathrm{CMRR}=\frac{A_{d}}{A_{c}}
$$

The value of CMRR can also be expressed in logarithmic terms as

$$
\begin{equation*}
\operatorname{CMRR}(\log)=20 \log _{10} \frac{A_{d}}{A_{c}} \tag{dB}
\end{equation*}
$$

Common Mode Rejection Ratio (CMMR)

EXAMPLE 10.21 Calculate the CMRR for the circuit measurements shown in Fig.

Common Mode Rejection Ratio (CMMR)

EXAMPLE 10.21 Calculate the CMRR for the circuit measurements shown in Fig.
Solution: From the measurement shown in Fig. using the procedure in step 1 above, we obtain

$$
A_{d}=\frac{V_{o}}{V_{d}}=\frac{8 \mathrm{~V}}{1 \mathrm{mV}}=8000
$$

The measurement shown in Fig. using the procedure in step 2 above, gives us

$$
A_{c}=\frac{V_{o}}{V_{c}}=\frac{12 \mathrm{mV}}{1 \mathrm{mV}}=12
$$

Using Eq. (10.28), we obtain the value of CMRR,

$$
\mathrm{CMRR}=\frac{A_{d}}{A_{c}}=\frac{8000}{12}=666.7
$$

which can also be expressed as

$$
\mathrm{CMRR}=20 \log _{10} \frac{A_{d}}{A_{s}}=20 \log _{10} 666.7=\mathbf{5 6 . 4 8} \mathrm{dB}
$$

Op-Amp Applications - Multiple Stage Gains

When a number of stages are connected in series, the overall gain is the product of the individual stage gains

Op-Amp Applications - Multiple Stage Gains

When a number of stages are connected in series, the overall gain is the product of the individual stage gains

Op-Amp Applications - Multiple Stage Gains

A number of op-amp stages could also be used to provide separate gains

Example: Design a circuit usng op-amps to provide outputs that are 10, 20 , and 50 times larger than the input. Use a feedback resistor of $R f=500$ $\mathrm{k} \Omega$ in all stages.

Op-Amp Applications - Multiple Stage Gains

A number of op-amp stages could also be used to provide separate gains

Example: Design a circuit usng op-amps to provide outputs that are 10, 20, and 50 times larger than the input. Use a feedback resistor of $R f=500$ $\mathrm{k} \Omega$ in all stages.

Solution: The resistor component for each stage is calculated to be

$$
\begin{aligned}
& R_{1}=-\frac{R_{f}}{A_{1}}=-\frac{500 \mathrm{k} \Omega}{-10}=50 \mathrm{k} \Omega \\
& R_{2}=-\frac{R_{f}}{A_{2}}=-\frac{500 \mathrm{k} \Omega}{-20}=25 \mathrm{k} \Omega \\
& R_{3}=-\frac{R_{f}}{A_{3}}=-\frac{500 \mathrm{k} \Omega}{-50}=10 \mathrm{k} \Omega
\end{aligned}
$$

Op-Amp Applications - Multiple Stage Gains

Op-Amp Applications

Calculate the output voltage for the circuit below. The inputs are $\mathrm{V}_{1}=50 \sin (1000 \mathrm{t}) \mathrm{mV}$ and $\mathrm{V}_{2}=10 \sin (3000 \mathrm{t}) \mathrm{mV}$.

Op-Amp Applications - Voltage Summing

Calculate the output voltage for the circuit below. The inputs are $\mathrm{V}_{1}=50 \sin (1000 \mathrm{t}) \mathrm{mV}$ and $\mathrm{V}_{2}=10 \sin (3000 \mathrm{t}) \mathrm{mV}$.

Solution: The output voltage is

$$
\begin{aligned}
V_{o} & =-\left(\frac{330 \mathrm{k} \Omega}{33 \mathrm{k} \Omega} V_{1}+\frac{330 \mathrm{k} \Omega}{10 \mathrm{k} \Omega} V_{2}\right)=-\left(10 V_{1}+33 V_{2}\right) \\
& =-[10(50 \mathrm{mV}) \sin (1000 t)+33(10 \mathrm{mV}) \sin (3000 t)] \\
& =-[\mathbf{0 . 5} \sin (\mathbf{1 0 0 0 t})+\mathbf{0 . 3 3} \sin (\mathbf{3 0 0 0 t})]
\end{aligned}
$$

Op-Amp Applications

Determine the output for the circuit of figure below with components $R_{f}=1 \mathrm{M} \Omega, R_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{2}=50 \mathrm{k} \Omega$, and $\mathrm{R}_{3}=500 \mathrm{k} \Omega$.

Op-Amp Applications - Voltage Subtraction

Determine the output for the circuit of figure below with components $R_{f}=1 \mathrm{M} \Omega, R_{1}=100 \mathrm{k} \Omega, R_{2}=50 \mathrm{k} \Omega$, and $\mathrm{R}_{3}=500 \mathrm{k} \Omega$.

Solution: The output voltage is calculated to be

$$
V_{o}=-\left(\frac{1 \mathrm{M} \Omega}{50 \mathrm{k} \Omega} V_{2}-\frac{1 \mathrm{M} \Omega}{500 \mathrm{k} \Omega} \frac{1 \mathrm{M} \Omega}{100 \mathrm{k} \Omega} V_{1}\right)=-\left(20 V_{2}-20 V_{1}\right)=\mathbf{- 2 0}\left(V_{2}-V_{1}\right)
$$

The output is seen to be the difference of V_{2} and V_{1} multiplied by a gain factor of -20 .

Op-Amp Applications - Voltmeter

Figure below shows a 741 op-amp used as the basic amplifier in a dc millivoltmeter The amplifier provides a meter with high input impedance

Op-Amp Applications - Voltmeter

Figure below shows a 741 op-amp used as the basic amplifier in a dc millivoltmeter The amplifier provides a meter with high input impedance

Multiple Stage Gains - Lamp Driver

- Figure shows an op-amp circuit that drives a lamp display
- When the noninverting input goes above the inverting input, the output at terminal 1 goes to the positive saturation level (near 5 V in this example)
- Then lamp is driven "on" when transistor Q_{1} conducts

- Output of the op-amp provides 30 mA current to transistor Q_{1}
- Q_{1} drives 600 mA through a suitably selected transistor (with $\beta \geq 20$)

Multiple Stage Gains - LED Driver

- Figure shows an op-amp circuit that drives LED display
- Op-amp circuit supplies 20 mA to drive an LED display when the noninverting input goes positive compared to the inverting input.

Instrumentation Amplifier

Instrumentation Amplifier

Negative feedback of the upper-left op-amp causes voltage at point 1 to be V_{1} Likewise, the voltage at point 2 (bottom of $R_{\text {gain }}$) is held to a value equal to V_{2} Hence, a voltage drop across $\mathrm{R}_{\text {gain }}$ equal to the difference between V_{1} and V_{2}. This causes a current through $\mathrm{R}_{\text {gain }}$,
Same amount of current must be going through the two "R" resistors This produces a voltage drop between points 3 and 4 equal to:

$$
V_{3-4}=\left(V_{2}-V_{1}\right)\left(1+\frac{2 R}{R_{\text {pain }}}\right)
$$

Instrumentation Amplifier

$$
\begin{gathered}
V_{B}=\frac{V_{4}}{2} \approx V_{A} \\
I=\frac{V_{3}-\frac{V_{4}}{2}}{R}=\frac{\frac{V_{4}}{2}-V_{o}}{R} \Rightarrow V_{3}-\frac{V_{4}}{2}=\frac{V_{4}}{2}-V_{o} \\
V_{3}-V_{4}=V_{o}=\left(V_{2}-V_{1}\right)\left(1+\frac{2 R}{R_{\text {gain }}}\right) \\
\frac{V_{o}}{V_{2}-V_{1}}=A_{v}=\left(1+\frac{2 R}{R_{\text {gain }}}\right)
\end{gathered}
$$

Instrumentation Amplifier

Instrumentation Amplifier

