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Ideal and Practical Filters

Quality Factor (Q) of a band-pass filter is the ratio of the 

center frequency to the bandwidth.

The quality factor (Q) can also be expressed in terms of 

the damping factor (DF) of the filter as



Ideal and Practical Filters

The Butterworth Characteristic 

• Provides a very flat amplitude 

response in the passband and a roll-

off rate of -20 dB/decade/pole

• Phase response is not linear 

• A pulse will cause overshoots on the 

output because each frequency 

component of the pulse’s rising and 

falling edges experiences a different 

time delay

• Normally used when all frequencies in 

the passband must have the same 

gain. 

• Often referred to as a maximally flat 

response. 

Butterworth, Chebyshev, or Bessel 

response characteristics can be 

realized with most active filter circuit 

configurations by proper selection of 

certain component values.



Ideal and Practical Filters

The Chebyshev Characteristic 

• Useful when a rapid roll-off is required 

• Because it provides a roll-off rate 

greater than 20 dB/decade/pole

• Filters can be implemented with fewer 

poles and less complex circuitry for a 

given roll-off rate

• Characterized by overshoot or ripples 

in the passband (depending on the 

number of poles) 

• and an even less linear phase 

response than the Butterworth. 

Butterworth, Chebyshev, or Bessel 

response characteristics can be 

realized with most active filter circuit 

configurations by proper selection of 

certain component values.



Ideal and Practical Filters

The Bessel Characteristic 

• Response exhibits a linear phase 

characteristic

• Meaning that the phase shift 

increases linearly with frequency

• Result is almost no overshoot on the 

output with a pulse input

• For this reason, filters with the Bessel 

response are used for filtering pulse 

waveforms without distorting the 

shape of the waveform.

Butterworth, Chebyshev, or Bessel 

response characteristics can be 

realized with most active filter circuit 

configurations by proper selection of 

certain component values.



Ideal and Practical Filters

• An active filter can be designed to have 

either a Butterworth, Chebyshev, or 

Bessel response characteristic 

regardless of whether it is a low-pass, 

high-pass, band-pass,

• The damping factor (DF ) of an active 

filter circuit determines which response 

characteristic the filter exhibits

• A generalized active filter is shown 

in figure below

• Includes an amplifier, a negative 

feedback circuit, and a filter section

• Damping factor determined by 

negative feedback circuit is given by



Ideal and Practical Filters

• Damping factor affects filter response by 

negative feedback action

• Any attempted increase or decrease in the 

output voltage is offset by the opposing effect 

of the negative feedback

• This tends to make the response curve flat in 

the passband of the filter if the value for the 

damping factor is precisely set

• By advanced mathematics, which we will not 

cover, values for the damping factor have 

been derived for various orders of filters to 

achieve the maximally flat response of the 

Butterworth characteristic

• The value of the damping factor required to produce a desired response 

characteristic depends on the order (number of poles) of the filter

• A pole, for our purposes, is simply a circuit with one resistor and one capacitor. 

The more poles a filter has, the faster its roll-off rate is

• To achieve a second-order Butterworth response, for example, the damping 

factor must be 1.414.



Ideal and Practical Filters

• To achieve a second-order Butterworth 

response, for example, the damping factor 

must be 1.414

• To implement this damping factor, the 

feedback resistor ratio must be

• This ratio gives the closed-loop gain of the 

noninverting amplifier portion of the filter, 

derived as follows



Ideal and Practical Filters

• To produce a filter that has a steeper transition region it is necessary to add 

additional circuitry to the basic filter. 

• Responses that are steeper than in the transition region cannot be obtained 

by simply cascading identical RC stages (due to loading effects)

• However, by combining an op-amp with frequency-selective feedback 

circuits, filters can be designed with roll-off rates of or more dB/decade

• Filters that include one or more op-amps in the design are called active 

filters

• These filters can optimize the roll-off rate or other attribute (such as phase 

response) with a particular filter design

• In general, the more poles the filter uses, the steeper its transition region will 

be

• The exact response depends on the type of filter and the number of poles



Ideal and Practical Filters

• The number of poles determines the roll-off rate of the filter

• A Butterworth response produces -20 dB/decade/pole 

• a first-order (one-pole) filter has a roll-off of -20 dB/decade

• a second-order (two-pole) filter has a roll-off rate of -40 dB/decade

• a third-order (three-pole) filter has a roll-off rate of -60 dB/decade …

• Generally, to obtain a filter with three poles or more, one-pole or two-pole 

filters are cascaded, as shown in figure below

• To obtain a third-order filter, for example, cascade a second-order and a 

first-order filter

• To obtain a fourth-order filter, cascade two second-order filters; and so on ,

• Each filter in a cascaded arrangement is called a stage or section.



A Single Pole Low-Pass Filter

Active Filters – Low-Pass Filters
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The Sallen-Key Low-Pass Filter • There are two low-pass RC circuits 

that provide a roll-off of -40 

dB/decade above the critical 

frequency (assuming a Butterworth 

characteristic)

• One RC circuit consists of RA and CA

and the second circuit consists of RB

and CB

• A unique feature is the capacitor that 

provides feedback for shaping the 

response near the edge of passband

• If RA = RB = R and CA = CB = C

Active Filters – Low-Pass Filters



Cascaded Low-Pass Filter

Active Filters – Low-Pass Filters



Ideal and Practical Filters
Values for the Butterworth response

• Determine the 

capacitance values for a 

critical frequency of 2680 

Hz if all the resistors in 

the RC low-pass circuits 

are 1.8 KΩ. 

• Also select values for the 

feedback resistors to get 

a Butterworth response



Ideal and Practical Filters

• Determine the 

capacitance values for a 

critical frequency of 

2680 Hz if all the 

resistors in the RC low-

pass circuits are 1.8 KΩ. 

• Also select values for 

the feedback resistors to 

get a Butterworth 

response



Active Filters – High-Pass Filters

RC High-pass filter

𝐴𝑣 = 1 +
𝑅𝐹
𝑅𝐺

𝑓𝑂𝐻 =
1

2 𝜋𝑅1𝐶1
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The Sallen-Key High-Pass Filter • Components RA, CA, RB and CB form 

the two-pole frequency-selective 

circuit

• Note that the positions of the resistors 

and capacitors in the frequency-

selective circuit are opposite to those 

in the low-pass configuration

• As with the other filters, the response 

characteristic can be optimized by 

proper selection of the feedback 

resistors, R1 and R2.

Active Filters – High-Pass Filters



Cascading High-Pass Filters

Active Filters – High-Pass Filters



Active Filters – Band-Pass Filters



Active Filters – Band-Pass Filters



Multiple-Feedback Band-Pass Filter

• The two feedback paths are through R2 

and C1

• R1 and C1 provide low-pass response

• R2 and C2 provide high-pass response

• Maximum gain, A0, occurs at the center 

frequency

• Q values of less than 10 are typical in 

this type of filter.

R1 and R3  appear in parallel as viewed from the C1 feedback path (with the Vin 

source replaced by a short).

Active Filters – Band-Pass Filters



• A value for the capacitors is chosen 

and then the three resistor values are 

calculated to achieve the desired 

values for f0, BW, and A0

• Q = f0/BW

• Resistor values can be found using the 

following formulas (stated without 

derivation):

• For denominator of the expression 

above to be positive, A0<2Q2 

• => a limitation on gain.

Active Filters – Band-Pass Filters



Active Filters

State-Variable Filter

Consists of a summing amplifier and two op-amp integrators 

Integrators act as single-pole low-pass filters combined in cascade to form a 

second-order filter

Although used primarily as a band-pass (BP) filter, it also provides low-pass 

(LP) and high-pass (HP) outputs



State-Variable Filter

• At input frequencies below 

fc, input signal passes 

through the summing 

amplifier and integrators 

and fed back out of phase

• Thus, the feedback signal 

and input signal cancel for 

all frequencies below fc. 
• At higher frequencies, feedback signal 

diminishes, allowing the input to pass through to 

the band-pass output

• As a result, BP output peaks sharply at fc
• Stable Qs up to 100 can be obtained

• Q is set by the feedback resistors R5 and R6 

according to equation:

Active Filters – Band-Pass Filters



Active Filters – Band-Stop Filters

Show how to make a notch (band-stop) filter using the circuit



Active Filters – Band-Stop Filters

Show how to make a notch 

(band-stop) filter using the circuit



State-Variable Filter

Determine the center frequency, Q, and BW for the passband of the filter

Active Filters – Band-Pass Filters



State-Variable Filter

Determine the center frequency, Q, and BW for the passband of the filter

For each integrator

𝑓𝑐 =
1

2𝜋𝑅4𝐶1
=

1

2𝜋𝑅7𝐶2
𝑓𝑐

=
1

2𝜋 1.0𝑘Ω 0.22 𝜇𝐹
= 7.23 𝑘𝐻𝑧

𝑓0 = 𝑓𝑐 = 7.23 𝑘𝐻𝑧

𝑄 =
1

3

𝑅5
𝑅6

+ 1 =
1

3

100 𝑘Ω

1.0 𝑘Ω
+ 1

= 33.7

𝐵𝑊 =
𝑓0
𝑄
=
7.23 𝑘𝐻𝑧

33.7
= 215 𝐻𝑧
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Multiple-Feedback Band-Stop Filter State-Variable Band-Stop Filter

One important application of this filter is 

minimizing the 50 Hz “hum” in audio 

systems by setting the center frequency 

to 50 Hz

Active Filters – Band-Stop Filters



State-Variable Band-Stop Filter

Verify that the band-stop filter in the figüre has a center frequency of 60 Hz, 

and optimize the filter for a Q of 10

Active Filters – Band-Stop Filters



State-Variable Band-Stop Filter

Verify that the band-stop filter in figure has a center frequency of 60 Hz, and 

optimize the filter for a Q of 10

𝑄 =
1

3

𝑅5
𝑅6

+ 1

𝑅5 = 3𝑄 − 1 𝑅6
Choose 𝑅6 = 3.3 𝑘Ω

𝑅5 = 3 10 − 1 3.3𝑘Ω
= 95.7 𝑘 Ω

For each integrator

𝑓𝑐 = 𝑓0 =
1

2𝜋𝑅4𝐶1
=

1

2𝜋𝑅7𝐶2
𝑓𝑐

=
1

2𝜋 12𝑘Ω 0.22 𝜇𝐹
= 60 𝐻𝑧

Active Filters – Band-Stop Filters



Active Filters – Band-Stop Filters

Optimize the state-variable filter for Q=50. 

What bandwidth is achieved?
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Optimize the state-variable filter for Q=50. 

What bandwidth is achieved?



Active Filters – Band-Stop Filters

Modify the band-stop filter for a center frequency of 120 Hz



Active Filters – Band-Stop Filters

Modify the band-stop filter for a 

center frequency of 120 Hz



State-Variable Band-Stop Filter

Find typical resistor and capacitor values for a center frequency of 50 Hz.

Active Filters – Band-Stop Filters


