# **Linear Integrated Circuits**

#### Single Slope ADC



- Comparator checks input voltage with integrated reference voltage, V<sub>REF</sub>
- At the same time the number of clock cycles is being counted.
- When the integrator output equals  $V_{IN}$ , the comparator outputs a logic '0', triggering the counter and integrator to reset and the latch to hold the digital output.

#### Single Slope ADC



 ΔV the smallest change in analog signal that will result in a change in the digital output, also called «Resolution»

$$\Delta V = \frac{V_{\text{REF}}}{2^N - 1} \approx \frac{V_{\text{REF}}}{2^N}$$
 for large N

#### Single Slope ADC



- Accuracy depends on tolerance of R and C.
- It would be better to develop an ADC whose accuracy does NOT depend on circuit element tolerances

# Dual Slope ADC



- For a fixed time interval, analog voltage connected to the integrator raises the voltage at the comparator input to some positive level
- At the end of this interval, count is set to zero and the electronic switch connects the integrator to a reference or fixed input voltage
- Then, counter advances whereas the integrator's output decreases at a **fixed rate** until it drops below the comparator reference voltage
- Then, control logic receives a signal (the comparator output) to stop the count
- Digital value stored in the counter is the digital output of the converter

#### Dual Slope ADC

- For a **fixed time interval**, analog voltage connected to the integrator raises the voltage at the comparator input to some positive level
- At the end of this interval, the voltage from the integrator is greater for the larger input voltage
- Count is set to zero and the electronic switch connects the integrator to a reference or fixed input voltage
- Counter advances whereas the integrator's output decreases at a fixed rate until it drops below the comparator reference voltage



#### Ladder Network Conversion



- A digital counter advances from a zero count while a ladder network driven by the counter outputs a staircase voltage, as shown in right Fig., which increases one voltage increment for each count step
- A comparator circuit, receiving both staircase voltage and analog input voltage, provides a signal to stop the count when the staircase voltage rises above the input voltage
- The counter value at that time is the digital output

### Ladder Network Conversion



- The amount of voltage change stepped by the staircase signal depends on the number of count bits used
- A 12-stage counter operating a 12-stage ladder network using a reference voltage of 10 V steps each count by a voltage of

$$\Delta V = \frac{V_{ref}}{2^{12} - 1} \approx \frac{10 V}{4096} = 2.4 mV$$

• The minimum number of conversions that could be carried out each second is then

 $#conversions = \frac{1}{4.1}ms \approx 244 \ conversions/second$ 

• Since a clock rate of 1 MHz operating a 12-stage counter needs a maximum conversion time of

 $4096 \times 1\mu s = 4096\mu s \approx 4.1ms$ 

- Since on the average, with some conversions requiring little count time and others near maximum count time, a conversion time of  $\frac{4.1ms}{2} = 2.05 ms$  is needed,
- And the average number of conversions is  $2 \times 244 = 488$  conversions/second
- A slower clock rate would result in fewer conversions per second
- A converter using fewer count stages (and less conversion resolution) would carry out more conversions per sec.
- The conversion accuracy depends on the accuracy of the comparator

- A non-periodic analog signal
- Convert to a digital signal by using a 4-bit ADC
- What should be the sampling rate?
  - At least twice the highest frequency of the signal
  - But signal is NOT periodic
  - Cannot define a period or frequency of the signal
  - Instead we should take the bandwidth of the signal
  - Sampling rate at least twice the bandwidth
  - i.e.  $f_s = \frac{1}{T_s} \ge 2 BW$  (Nyquist criterion)



- Sampling
  - Let's take  $T_s = 1 ms$  (Assuming it satisfies Nyquist criterion  $f_s = \frac{1}{T_s} \ge 2 BW$ )
  - We take samples at each  $T_s$
- Quantization
  - The sampled value of the analog signal is kept constant via a sample and hold circuit.
  - These values will be represented by the combinations that can be obtained by using 4-bits (N=4)



• 
$$\Delta V = \frac{V_{\text{max}} - V_{\text{min}}}{2^{N} - 1} = \frac{4 - (-4)}{2^{4} - 1} = \frac{8}{15} = 0.53 V$$



| <u>Analog</u> | <u>Digital</u>     |
|---------------|--------------------|
| <u>Signal</u> | <u>Word</u>        |
| <u>Level</u>  |                    |
| -3.99V        | → 1111             |
| +3.46 V       | $\rightarrow 1110$ |
| +2.92 V       | $\rightarrow 1101$ |
| +2.38 V       | $\rightarrow 1100$ |
| +1.85 V       | $\rightarrow 1011$ |
| +1.32 V       | $\rightarrow 1010$ |
| +0.79 V       | $\rightarrow 1001$ |
| +0.26 V       | $\rightarrow 1000$ |
| -0.28 V       | → 0111             |
| -0.81 V       | $\rightarrow 0110$ |
| -1.34V        | $\rightarrow 0101$ |
| -1.88 V       | $\rightarrow 0100$ |
| -2.41V        | $\rightarrow 0011$ |
| -2.94 V       | $\rightarrow 0010$ |
| -3.47 V       | $\rightarrow 0001$ |
| -4.00 V       | → 0000             |

| Sample<br># | Signal<br>value | Quant.<br>value | Digital<br>word |
|-------------|-----------------|-----------------|-----------------|
| S1          | +1 V            | +0.79           | 1001            |
| S2          | +2.5 V          | +2.38           | 1100            |
| S3          | +3 V            | +2.92           | 1101            |
| S4          | 0 V             | -0.28           | 0111            |
| S5          | -3.2 V          | -3.47           | 0001            |
| S6          | -1.98 V         | -2.41           | 0011            |
| S7          | +2.6 V          | +2.38           | 1100            |
| S8          | +3.8 V          | +3.46           | 1110            |
|             |                 |                 |                 |

• 
$$\Delta V = \frac{V_{\text{max}} - V_{\text{min}}}{2^{N} - 1} = \frac{4 - (-4)}{2^{4} - 1} = \frac{8}{15} = 0.53 V$$



<u>Analog</u> <u>Digital</u> <u>Signal</u> <u>Word</u> <u>Level</u>  $-3.99 V \rightarrow 1111$  $+3.46 V \rightarrow 1110$  $+2.92 V \rightarrow 1101$  $+2.38 V \rightarrow 1100$  $+1.85 V \rightarrow 1011$  $+1.32 V \rightarrow 1010$  $+0.79 V \rightarrow 1001$  $+0.26 V \rightarrow 1000$  $-0.28 V \rightarrow 0111$  $-0.81 V \rightarrow 0110$  $-1.34 V \rightarrow 0101$  $-1.88 V \rightarrow 0100$  $-2.41 V \rightarrow 0011$  $-2.94 V \rightarrow 0.010$  $-3.47 V \rightarrow 0001$  $-4.00 V \rightarrow 0000$ 

- S1 =1V does NOT exist among analog signal levels that can be represented by a 4-bit word.
- We have to choose among available values
- 1V is between two quantized values: +0.79 and +1.32
- We choose the lowest one as a rule here.



- If one bit is generated in 1 clock cycle of the ADC,
- To represent each signal sample, we need 4 clock cycles
- We can fasten conversion of each analog signal by increasing the clock frequency.

# Successive Approximation ADC

- Initially, the successive approximation register (SAR) is set to a value where only the most significant bit (MSB) is equal to 1, all other bits zero.
- This code is fed into the ladder network,
- The ladder network provides the analog equivalent of this digital code (Vref/2)



- Comparator checks it with the sampled input voltage level
- If this analog voltage exceeds V<sub>in</sub>, the comparator causes the SAR to reset this bit
- Otherwise, the bit is left as 1 and next bit is set to 1 and the same test is done
- This goes on until every bit in the SAR has been tested
- The resulting code is the digital approximation of the sampled input

- Capacitor C charges toward V<sub>CC</sub> through external resistors R<sub>A</sub> and R<sub>B</sub>
- Capacitor voltage rises until it goes above 2V<sub>cc</sub> /3
- This is the threshold voltage at pin 6, which drives comparator 1 to trigger the flip-flop so that the output at pin 3 goes low
- In addition, the discharge transistor is driven on, causing the output at pin 7 to discharge the capacitor through resistor R<sub>B</sub>
- The capacitor voltage then decreases until it drops below the trigger level ( $V_{CC}$ /3)
- The flip-flop is triggered so that the output goes back high and the discharge transistor is turned off, so that the capacitor can again charge through resistors R<sub>A</sub> and R<sub>B</sub> toward V<sub>CC</sub>.





$$T_{\text{high}} \approx 0.7(R_A + R_B)C$$
  
 $T_{\text{low}} \approx 0.7R_BC$   
 $T = \text{period} = T_{\text{high}} + T_{\text{low}}$ 

$$f = \frac{1}{T} \approx \frac{1.44}{(R_A + 2R_B)C}$$









• When trigger input signal goes negative, it triggers the one-shot, with output at pin 3 then going high for a time period given by

 $T_{high} = 1.1 R_A C$ 

- Negative edge of the trigger input causes comparator 2 to trigger the flip-flop, with the output at pin 3 going high
- Capacitor C charges toward  $V_{CC}$  through resistor  $R_A$
- When the voltage across the capacitor reaches the threshold level of 2V<sub>CC</sub> /3, comparator 1 triggers the flip-flop, with output going low
- The discharge transistor also goes low, causing the capacitor to remain near OV until triggered again

