Linear Integrated Circuits

Single Slope ADC

- Comparator checks input voltage with integrated reference voltage, $\mathrm{V}_{\text {REF }}$
- At the same time the number of clock cycles is being counted.
- When the integrator output equals V_{IN}, the comparator outputs a logic ' 0 ', triggering the counter and integrator to reset and the latch to hold the digital output.

Single Slope ADC

- ΔV the smallest change in analog signal that will result in a change in the digital output, also called «Resolution»

$$
\Delta V=\frac{V_{\mathrm{REF}}}{2^{N}-1} \approx \frac{V_{\mathrm{REF}}}{2^{N}} \quad \text { for large } \mathrm{N}
$$

Single Slope ADC

- Accuracy depends on tolerance of R and C.
- It would be better to develop an ADC whose accuracy does NOT depend on circuit element tolerances

Dual Slope ADC

- For a fixed time interval, analog voltage connected to the integrator raises the voltage at the comparator input to some positive level
- At the end of this interval, count is set to zero and the electronic switch connects the integrator to a reference or fixed input voltage
- Then, counter advances whereas the integrator's output decreases at a fixed rate until it drops below the comparator reference voltage
- Then, control logic receives a signal (the comparator output) to stop the count
- Digital value stored in the counter is the digital output of the converter

Dual Slope ADC

- For a fixed time interval, analog voltage connected to the integrator raises the voltage at the comparator input to some positive level
- At the end of this interval, the voltage from the integrator is greater for the larger input voltage
- Count is set to zero and the electronic switch connects the integrator to a reference or fixed input voltage
- Counter advances whereas the integrator's output decreases at a fixed rate until it drops below the comparator reference voltage

Ladder Network Conversion

- A digital counter advances from a zero count while a ladder network driven by the counter outputs a staircase voltage, as shown in right Fig., which increases one voltage increment for each count step
- A comparator circuit, receiving both staircase voltage and analog input voltage, provides a signal to stop the count when the staircase voltage rises above the input voltage
- The counter value at that time is the digital output

Ladder Network Conversion

- The amount of voltage change stepped by the staircase signal depends on the number of count bits used
- A 12 -stage counter operating a 12 -stage ladder network using a reference voltage of 10 V steps each count by a voltage of

$$
\Delta V=\frac{V_{r e f}}{2^{12}-1} \approx \frac{10 \mathrm{~V}}{4096}=2.4 \mathrm{mV}
$$

- The minimum number of conversions that could be carried out each second is then

$$
\# \text { conversions }=\frac{1}{4.1} m s \approx 244 \text { conversions/second }
$$

- Since a clock rate of 1 MHz operating a 12 -stage counter needs a maximum conversion time of

$$
4096 \times 1 \mu s=4096 \mu s \approx 4.1 \mathrm{~ms}
$$

- Since on the average, with some conversions requiring little count time and others near maximum count time, a conversion time of $\frac{4.1 \mathrm{~ms}}{2}=2.05 \mathrm{~ms}$ is needed,
- And the average number of conversions is $2 \times 244=488$ conversions/second
- A slower clock rate would result in fewer conversions per second
- A converter using fewer count stages (and less conversion resolution) would carry out more conversions per sec.
- The conversion accuracy depends on the accuracy of the comparator

Analog to Digital Conversion Example

- A non-periodic analog signal
- Convert to a digital signal by using a 4-bit ADC
- What should be the sampling rate?
- At least twice the highest frequency of the signal
- But signal is NOT periodic
- Cannot define a period or frequency of the signal
- Instead we should take the bandwidth of the signal
- Sampling rate at least twice the bandwidth
- i.e. $f_{s}=\frac{1}{T_{s}} \geq 2 B W$ (Nyquist
 criterion)

Analog to Digital Conversion Example

- Sampling
- Let's take $T_{S}=1 \mathrm{~ms}$ (Assuming it satisfies Nyquist criterion $f_{s}=$ $\frac{1}{T_{s}} \geq 2 B W$)
- We take samples at each T_{S}
- Quantization
- The sampled value of the analog signal is kept constant via a sample and hold circuit.
- These values will be represented by the combinations that can be obtained by using 4-bits ($\mathrm{N}=4$)

Analog to Digital Conversion Example

- $\Delta V=\frac{V_{\max }-V_{\min }}{2^{N}-1}=\frac{4-(-4)}{2^{4}-1}=\frac{8}{15}=0.53 \mathrm{~V}$

Analog $\underline{\text { Signal }}$ Level Digital Word
$-3.99 \mathrm{~V} \rightarrow 1111$
$+3.46 \mathrm{~V} \rightarrow 1110$
$+2.92 \mathrm{~V} \rightarrow 1101$
$+2.38 \mathrm{~V} \rightarrow 1100$
$+1.85 \mathrm{~V} \rightarrow 1011$
$+1.32 \mathrm{~V} \rightarrow 1010$
$+0.79 \mathrm{~V} \rightarrow 1001$
$+0.26 \mathrm{~V} \rightarrow 1000$
$-0.28 \mathrm{~V} \rightarrow 0111$
$-0.81 \mathrm{~V} \rightarrow 0110$
$-1.34 \mathrm{~V} \rightarrow 0101$
$-1.88 \mathrm{~V} \rightarrow 0100$
$-2.41 \mathrm{~V} \rightarrow 0011$
$-2.94 \mathrm{~V} \rightarrow 0010$
$-3.47 \mathrm{~V} \rightarrow 0001$
$-4.00 \mathrm{~V} \rightarrow 0000$

Sample $\#$	Signal value	Quant. value	Digital word
S1	+1 V	+0.79	1001
S2	+2.5 V	+2.38	1100
S3	+3 V	+2.92	1101
S4	0 V	-0.28	0111
S5	-3.2 V	-3.47	0001
S6	-1.98 V	-2.41	0011
S7	+2.6 V	+2.38	1100
S8	+3.8 V	+3.46	1110
\ldots	\ldots	\ldots	\ldots

Analog to Digital Conversion Example

- $\Delta V=\frac{V_{\max }-V_{\text {min }}}{2^{N}-1}=\frac{4-(-4)}{2^{4}-1}=\frac{8}{15}=0.53 \mathrm{~V}$

$$
\begin{aligned}
& \text { Analog Digital } \\
& \text { Signal Word } \\
& \text { Level } \\
& -3.99 \mathrm{~V} \rightarrow 1111 \\
& +3.46 V \rightarrow 1110 \\
& +2.92 V \rightarrow 1101 \\
& +2.38 V \rightarrow 1100 \\
& +1.85 V \rightarrow 1011 \\
& +1.32 V \rightarrow 1010 \\
& +0.79 \mathrm{~V} \rightarrow 1001 \\
& +0.26 \mathrm{~V} \rightarrow 1000 \\
& -0.28 \mathrm{~V} \rightarrow 0111 \\
& -0.81 V \rightarrow 0110 \\
& -1.34 V \rightarrow 0101 \\
& -1.88 \mathrm{~V} \rightarrow 0100 \\
& -2.41 V \rightarrow 0011 \\
& -2.94 V \rightarrow 0010 \\
& -3.47 \mathrm{~V} \rightarrow 0001 \\
& -4.00 \mathrm{~V} \rightarrow 0000
\end{aligned}
$$

- S1 = 1 V does NOT exist among analog signal levels that can be represented by a 4-bit word.
- We have to choose among available values
- 1 V is between two quantized values: +0.79 and +1.32
- We choose the lowest one as a rule here.

Analog to Digital Conversion Example

- If one bit is generated in 1 clock cycle of the ADC,
- To represent each signal sample, we need 4 clock cycles
- We can fasten conversion of each analog signal by increasing the clock frequency.

Successive Approximation ADC

- Initially, the successive approximation register (SAR) is set to a value where only the most significant bit (MSB) is equal to 1 , all other bits zero.
- This code is fed into the ladder network,
- The ladder network provides the analog equivalent of this digital code
 (Vref/2)
- Comparator checks it with the sampled input voltage level
- If this analog voltage exceeds $\mathrm{V}_{\text {in }}$, the comparator causes the SAR to reset this bit
- Otherwise, the bit is left as 1 and next bit is set to 1 and the same test is done
- This goes on until every bit in the SAR has been tested
- The resulting code is the digital approximation of the sampled input

Timer IC Unit Operation

- Capacitor Charges toward V_{CC} through external resistors R_{A} and R_{B}
- Capacitor voltage rises until it goes above $2 \mathrm{~V}_{\mathrm{cc}} / 3$
- This is the threshold voltage at pin 6, which drives comparator 1 to trigger the flip-flop so that the output at pin 3 goes low
- In addition, the discharge transistor is driven on, causing the output at pin 7
 to discharge the capacitor through resistor R_{B}
- The capacitor voltage then decreases until it drops below the trigger level ($\mathrm{V}_{\mathrm{cc}} / 3$)
- The flip-flop is triggered so that the output goes back high and the discharge transistor is turned off, so that the capacitor can again charge through resistors R_{A} and R_{B} toward $V_{C C}$.

Timer IC Unit Operation

$$
\begin{gathered}
T_{\text {high }} \approx 0.7\left(R_{A}+R_{B}\right) C \\
T_{\text {low }} \approx 0.7 R_{B} C \\
T=\text { period }=T_{\text {high }}+T_{\text {low }} \\
f=\frac{1}{T} \approx \frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
\end{gathered}
$$

Timer IC Unit Operation

Timer IC Unit Operation

$$
T_{\text {high }} \approx 0.7\left(R_{A}+R_{B}\right) C
$$

$$
T_{\text {low }} \approx 0.7 R_{B} C
$$

$$
T=\operatorname{period}=T_{\text {high }}+T_{\text {low }}
$$

$$
f=\frac{1}{T} \approx \frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

$$
\begin{aligned}
T_{\text {high }} & =0.7\left(R_{A}+R_{B}\right) C=0.7\left(7.5 \times 10^{3}+7.5 \times 10^{3}\right)\left(0.1 \times 10^{-6}\right) \\
& =1.05 \mathrm{~ms} \\
T_{\text {low }} & =0.7 R_{B} C=0.7\left(7.5 \times 10^{3}\right)\left(0.1 \times 10^{-6}\right)=0.525 \mathrm{~ms} \\
T & =T_{\text {high }}+T_{\text {low }}=1.05 \mathrm{~ms}+0.525 \mathrm{~ms}=1.575 \mathrm{~ms} \\
f & =\frac{1}{T}=\frac{1}{1.575 \times 10^{-3}} \approx \mathbf{6 3 5} \mathbf{~ H z}
\end{aligned}
$$

Timer IC Unit Operation

- When trigger input signal goes

negative, it triggers the one-shot, with output at pin 3 then going high for a time period given by

$$
T_{\text {high }}=1.1 R_{A} C
$$

- Negative edge of the trigger input causes comparator 2 to trigger the flip-flop, with the output at pin 3 going high

- Capacitor C charges toward V_{cc} through resistor R_{A}
- When the voltage across the capacitor reaches the threshold level of $2 \mathrm{~V}_{\mathrm{cc}} / 3$, comparator 1 triggers the flip-flop, with output going low
- The discharge transistor also goes low, causing the capacitor to remain near OV until triggered again

