Feedback and Oscillator Circuits

Feedback

- The input signal, $V s$, is applied to a mixer network
- Here it is combined with a feedback signal V_{f}
- Difference (or sum) of signals, V_{i}, is then the input voltage to the amplifier
- Amplifier output, V_{o}, is connected to the feedback network (β), which provides a reduced portion of the output as feedback signal to the input mixer network
- If the feedback signal is of the opposite polarity compared to input, this is negative feedback
- If the feedback signal is of the same polarity with the input, this is positive feedback

Feedback

Negative Feedback:

Although negative feedback results in reduced overall voltage gain, a number of improvements are obtained, among them being:

1. Higher input impedance.
2. Better stabilized voltage gain.
3. Improved frequency response.
4. Lower output impedance.
5. Reduced noise.
6. More linear operation.

Feedback

Types of Feedback Connections:

There are four basic ways of connecting the feedback signal. Both voltage and current can
be fed back to the input either in series or parallel. Specifically, there can be:

1. Voltage-series feedback (Fig. 14.2 a).
2. Voltage-shunt feedback (Fig. 14.2 b).
3. Current-series feedback (Fig. 14.2 c).
4. Current-shunt feedback (Fig. 14.2 d).

(a)

(c)

(b)

(d)

Feedback

Types of Feedback Connections:

1. Voltage-series feedback (Fig. 14.2 a).
2. Voltage-shunt feedback (Fig. 14.2 b).
3. Current-series feedback (Fig. 14.2 c).
4. Current-shunt feedback (Fig. 14.2 d).

In the list above,

- Voltage refers to connecting the output voltage as input to the feedback network
- Current refers to tapping off some output current through the feedback network.
- Series refers to connecting the feedback signal in series with the input signal voltage
- Shunt refers to connecting the feedback signal in shunt (parallel) with an input current source.

(a)
(c)

(b)

(d)

Feedback

Voltage-series feedback :

If there is no feedback ($V_{f}=0$), the voltage gain of the amplifier stage is

$$
A=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}}
$$

If V_{f} is connected in series with the input, then

$$
\begin{gathered}
V i=V s-V f \\
V o=A V_{i}=A\left(V_{s}-V_{f}\right)=A V_{s}-A V_{f}=A V_{s}-A\left(\beta V_{o}\right) \\
(1+\beta A) V_{o}=A V_{s}
\end{gathered}
$$

so that the overall voltage gain with feedback is

$$
A_{f}=V_{o} V_{s}=\frac{A}{1+\beta A}
$$

This shows that the gain with feedback is the amplifier gain reduced by the factor $(1+\beta A)$
This factor will be seen also to affect input and output impedance among other circuit features.

Feedback

Voltage-series feedback - Input Impepance:

$$
\begin{gathered}
I_{i}=\frac{V_{i}}{Z_{i}}=\frac{V_{s}-V_{f}}{Z_{i}}=\frac{V_{s}-\beta V_{o}}{Z_{i}}=\frac{V_{s}-\beta A V_{i}}{Z_{i}} \\
I_{i} Z_{i}=V_{s}-\beta A V_{i} \\
V_{s}=I_{i} Z_{i}+\beta A V_{i}=I_{i} Z_{i}+\beta A I_{i} Z_{i} \\
Z_{i f}=\frac{V_{s}}{I_{i}}=Z_{i}+(\beta A) Z_{i}=Z_{i}(1+\beta A)
\end{gathered}
$$

The input impedance with series feedback is the value of the input impedance without feedback multiplied by the factor $(1+\beta A)$, and applies to both voltageseries and current-series configurations.

Feedback

Voltage-series feedback - Output Impepance:

The output impedance is determined by applying a voltage V, resulting in a current I, with V_{s} shorted out ($V_{s}=0$). The voltage V is then

$$
V=I Z_{o}+A V_{i}
$$

For $V_{s}=0$,

$$
\begin{gathered}
V_{i}=-V_{f} \\
V=I Z_{o}-A V_{f}=I Z_{o}-A(\beta V)
\end{gathered}
$$

Rewriting the equation as

$$
V+\beta A V=I Z_{o}
$$

allows solving for the output impedance with feedback:

$$
Z_{o f}=\frac{V}{I}=\frac{Z_{o}}{1+\beta A}
$$

This shows that with voltage-series feedback the output impedance is reduced from that without feedback by the factor $(1+\beta A)$

Feedback

Voltage-shunt feedback :

The gain with feedback for the network shown in the figure is

$$
\begin{gathered}
A_{f}=\frac{V_{o}}{I_{s}}=\frac{A I_{i}}{I_{i}+I_{f}} \\
=\frac{\left(A I_{i}\right)}{I_{i}+\beta V_{o}}=\frac{A I_{i}}{I_{i}+\beta A I_{i}} \\
A_{f}=\frac{A}{1+\beta A}
\end{gathered}
$$

Feedback

Voltage-shunt feedback - Input Impedance:

$$
\begin{gathered}
Z_{i f}=\frac{V_{i}}{I_{s}}=\frac{V_{i}}{I_{i}+I_{f}} \\
=\frac{V_{i}}{I_{i}+\beta V_{o}} \\
=\frac{V_{i} / I_{i}}{I_{i} / I_{i}+\beta V_{o} / I_{i}} \\
Z_{i f}=\frac{Z_{i}}{1+\beta A}
\end{gathered}
$$

This reduced input impedance applies to the voltageseries connection and the voltage-shunt connection

Feedback

Current-series feedback Output Impedance:

Output impedance can be determined by applying a signal V to the output, with V_{s} shorted out, resulting in a current $/$

Ratio of V to I is the output impedance
For the output part of a current-series feedback connection, the resulting output impedance is:

With $V_{s}=0$,

$$
\begin{gathered}
V_{i}=V_{f} \\
I=\frac{V}{Z_{o}}-A V_{i}=\frac{V}{Z_{o}}-A V_{f}=\frac{V}{Z_{o}}-A \beta I
\end{gathered}
$$

$$
Z_{o}(1+\beta A) I=V
$$

$$
Z_{o f}=\frac{V}{I}=Z_{o}(1+\beta A)
$$

Feedback

Effect of Feedback Connection on Input and Output Impedance:

A summary of the effect of feedback on input and output impedance is provided in the table below

	Voltage-Series	Current-Series	Voltage-Shunt	Current-Shunt
$Z_{i f}$	$Z_{i}(1+\beta A)$	$Z_{i}(1+\beta A)$	$\frac{Z_{i}}{1+\beta A}$	$\frac{Z_{i}}{1+\beta A}$
	(increased)	(increased)	(decreased)	(decreased)
$Z_{o f}$	$\frac{Z_{o}}{1+\beta A}$	$Z_{o}(1+\beta A)$	$\frac{Z_{o}}{1+\beta A}$	$Z_{o}(1+\beta A)$
	(decreased)	(increased)	(decreased)	(increased)

